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 Data parallelism (SIMD, SIMT, etc.): extension of 

ISA enabling the same instruction to be 

performed on multiple data items simultaneously 
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 Many/most CPUs support 
vectorization in some form 

 Hardware core vector lengths 
SSE                 4 SP 
SSE2   2 DP,   4 SP 
AVX     4 DP,   8 SP 
MIC     8 DP, 16 SP 
BG/P   2 DP 
BG/Q   4 DP 

PU = processing unit 



Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 
3 

- Extra programmer effort is required 

- Not all algorithms can be vectorized (regular algorithm structure & 
fine-grain parallelism must be used) 

- Most CPUs have data alignment restrictions for load/store 
operations (obey or risk incorrect code) 

- Special directives are often needed to enable vectorization 

- Vector instructions are architecture-specific 

+ Vectorization is the best way to optimize for power and 
performance due to reduced clock cycles 

+ When data is organized properly, a vector load instruction (i.e. 
movaps) can replace ‘normal’ load instructions (i.e. movsd) 

+ Vector operations can potentially have a smaller footprint in the 
instruction cache when fewer instructions need to be executed 
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 Vectorized (DP 2 load, 2 store, 2 flop, 6 cycle) 

loop: movaps    (%rbx,%rsi,8), %xmm0 

      mulpd     %xmm0, %xmm0 

      movaps    %xmm0, (%rdx,%rsi,8) 

      addq      $2, %rsi  

      cmpq      %rax, %rsi 

      jb        loop  

 Unvectorized(DP 1 load, 1 store, 1 flop, 6 cycle) 

loop: movsd     (%rbx,%rax,8), %xmm0 

      mulsd     %xmm0, %xmm0 

      movsd     %xmm0, (%rdx,%rax,8) 

      incq      %rax 

      cmpq      %rcx, %rax 

      jb        loop  
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 Vectorized 
loop: 
movsd   (%rsi,%rdi,8), %xmm0 
movhpd  8(%rsi,%rdi,8), %xmm0 
mulpd   %xmm0, %xmm0 
movsd   %xmm0, (%rdx,%rdi,8) 
movhpd  %xmm0, 8(%rdx,%rdi,8) 
movsd   16(%rsi,%rdi,8), %xmm1  
movhpd  24(%rsi,%rdi,8), %xmm1  
mulpd   %xmm1, %xmm1  
movsd   %xmm1, 16(%rdx,%rdi,8) 
movhpd  %xmm1,24(%rdx,%rdi,8) 
movsd   32(%rsi,%rdi,8), %xmm2  
movhpd  40(%rsi,%rdi,8), %xmm2  

 

mulpd   %xmm2, %xmm2 

movsd   %xmm2, 32(%rdx,%rdi,8) 

movhpd  %xmm2, 40(%rdx,%rdi,8) 

movsd   48(%rsi,%rdi,8), %xmm3  

movhpd  56(%rsi,%rdi,8), %xmm3 

mulpd   %xmm3, %xmm3 

movsd   %xmm3, 48(%rdx,%rdi,8) 

movhpd  %xmm3, 56(%rdx,%rdi,8) 

addq    $8, %rdi 

cmpq    %rax, %rdi 

jb loop 

 •This is the typical vectorized code produced by the compiler for SSE2 

•Executes four instructions per operation instead of three  

• Above code does not show generated prologue and epilogue code 

• Does not show additional loop versions for other alignment cases 

• This has a large footprint in the instruction cache 
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 Vectorized 

loop: 

vmovupd   32(%r8,%rcx,8), %ymm1 

vmovupd   (%r8,%rcx,8), %ymm0 

vmulpd    %ymm1, %ymm1, %ymm3 

vmulpd    %ymm0, %ymm0, %ymm2 

vmovupd   %xmm2, (%rdi,%rcx,8) 

vmovupd   %xmm3, 32(%rdi,%rcx,8) 

vextractf128 $1, %ymm2, 16(%rdi,%rcx,8) 

vextractf128 $1, %ymm3, 48(%rdi,%rcx,8) 

vmovupd   96(%r8,%rcx,8), %ymm5 

vmovupd   64(%r8,%rcx,8), %ymm4 

 

vmulpd    %ymm5, %ymm5, %ymm7 

vmulpd    %ymm4, %ymm4, %ymm6 

vmovupd   %xmm6, 64(%rdi,%rcx,8) 

vmovupd   %xmm7, 96(%rdi,%rcx,8) 

vextractf128 $1, %ymm6, 80(%rdi,%rcx,8) 

vextractf128 $1, %ymm7, 112(%rdi,%rcx,8) 

addq      $16, %rcx 

cmpq      %rdx, %rcx 

jb        loop  

 

 

•This is the typical vectorized code produced by the compiler for AVX 

•Similar issues to SSE2, but operations work on longer vectors 

• Above code does not show generated prologue and epilogue code 

• Does not show additional loop versions for other alignment cases 

• This has a large footprint in the instruction cache 
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 Vectorized (16 load, 16 store, 16 flop, 15 cycle) 

loop: 

vmovupd   (%rbx,%rsi,8), %ymm0 

vmulpd    %ymm0, %ymm0, %ymm1 

vmovupd   %ymm1, (%rdx,%rsi,8) 

vmovupd   32(%rbx,%rsi,8), %ymm2 

vmulpd    %ymm2, %ymm2, %ymm3 

vmovupd   %ymm3, 32(%rdx,%rsi,8) 

vmovupd   64(%rbx,%rsi,8), %ymm4 

vmulpd    %ymm4, %ymm4, %ymm5 

vmovupd   %ymm5, 64(%rdx,%rsi,8) 

vmovupd   96(%rbx,%rsi,8), %ymm6 

vmulpd    %ymm6, %ymm6, %ymm7 

vmovupd   %ymm7, 96(%rdx,%rsi,8) 

addq      $16, %rsi 

cmpq      %rax, %rsi 

jb        loop 

 This could be the default code generated with the proper 

programming model: no prologue, no epilogue, no loop versioning 

 

likely bandwidth 

limited with this code 

density per core 
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 We have applied hybrid index sets to achieve 
optimal vectorization 

 We can extend this concept to handle other 
programming models 

 Finally, we can do even better! 

• Current traversal implementations contain detailed 
compiler directives 

• We have proven the compiler is capable of good 
vectorization but not conveniently exposed 

• We would like to start a dialogue with compiler 
vendors to better expose vectorization for our needs 

 




